資料請求番号:TS36 TS41 TS91
スポンサーリンク微分方程式は物体の運動、化学反応、電気回路などあらゆる現象を説明するのに重要な方程式で、世の中の自然現象はほぼすべて微分方程式で表現できるといっても過言ではないでしょう。微分方程式というのは自然現象を操ってモノを作る工学の世界では非常に重要な方程式なのです。
しかしながら、微分方程式を解くのは簡単なことではありません。微分方程式の型に合わせて様々なテクニックを駆使して解きます。その中で複雑な微分積分が多くあります。中には、数学理論で解くことのできない微分方程式も存在します。
そのため、方程式を離散化して代数方程式に落とし込んで解く方法を学び、活用することが多いです。
その一つが↓こちら↓
[blogcard url=”http://shimaphoto03.com/science/rk-method/”]
工学をするにあたっては、微分方程式を数学的に解くよりも、このように
微分方程式を代数方程式、すなわち、「ただの足し算引き算掛け算割り算」にすり替えて解く技術の方が重要視される傾向にあると思います。
ルンゲ・クッタ法あるいはその他の数値計算技術のほかに微分方程式を代数方程式にする方法があります。
それがラプラス変換なのです。
本記事ではラプラス変換の基本的な理論の説明とその演習として、簡単な
回路の解析、物体の運動の解析
をラプラス変換で行います。
注:こちらは、初めて、あるいは久しぶりにラプラス変換に触れる人向けに、詳しく(悪く言えばくどく)解説を行っています。
ラプラス変換に慣れている方は↓こちら↓で高度なRLC回路のステップ応答問題や機械力学のバネーダッシュポット系のインパルス応答問題に挑戦してみるといいと思います。
[blogcard url=”http://shimaphoto03.com/science/laplace-prac/”]
(※QC=Quality Control=品質管理)
ラプラス変換を初めて学ぶ際、一番最初に困るのが、突然わけわかんない記号を使われることではないでしょうか?F(s)やℒ[f(t)]のような記号は、定義を理解し、計算に慣れた人にとっては非常に便利なのですが、その慣れた感覚で初学者に説明してしまうと疑問だらけになってしまいます。そういう意味で
f(t)のラプラス変換について
と
の二通りの表記の方法があるということをまず、頭の中に入れておいていただきたいのです。
これを了承して計算問題を何度も解いていくと、だんだんラプラス変換を使った微分方程式の解法に慣れてくることができます。
数学は頭でっかちな学問に見えて割と「勘」というのが必要な学問でして、その勘と言うのは繰り返しの演習で獲得することができます。
出典:斎藤制海・徐 粒 共著,計測と制御シリーズ 制御工学 -フィートバック制御の考え方ー,第1版第1刷,2003年,pp.19
・・・①
・・・②
①、②より
出典:斎藤制海・徐 粒 共著,計測と制御シリーズ 制御工学 -フィートバック制御の考え方ー,第1版第1刷,2003年,pp.19
出典:斎藤制海・徐 粒 共著,計測と制御シリーズ 制御工学 -フィートバック制御の考え方ー,第1版第1刷,2003年,pp.19
今回は、微分方程式を解く方法の一つとしてラプラス変換を紹介し、簡単な微分方程式をラプラス変換で解きました。電験三種に出てくるように回路設計はもちろん、制御理論を考える上でもラプラス変換は非常に重要です。プロセス制御においてはプロセスの因と果が微分方程式で結ばれていることが多く、そこをラプラス変換によって代数方程式によって入力と出力の関係を比で表すということが行われています。
ラプラス変換による微分方程式の求解に慣れてきたら、より高度なRLC回路の問題や機械力学のバネーダッシュポット系のインパルス応答問題に挑戦してみるといいと思います。
[blogcard url=”http://shimaphoto03.com/science/laplace-prac/”]